
uncertainties Python package
Documentation

Release 3.0.3

Eric O. LEBIGOT (EOL)

Mar 09, 2019

Contents

1 Welcome to the uncertainties package 1

2 User Guide 7

3 Uncertainties in arrays 17

4 Technical Guide 21

i

ii

CHAPTER 1

Welcome to the uncertainties package

The uncertainties package is a free, cross-platform program that transparently handles calculations with numbers
with uncertainties (like 3.14±0.01). It can also yield the derivatives of any expression.

The uncertainties package takes the pain and complexity out of uncertainty calculations. Error propagation is
not to be feared anymore!

Calculations of results with uncertainties, or of derivatives, can be performed either in an interactive session (as with
a calculator), or in programs written in the Python programming language. Existing calculation code can run with
little or no change.

Whatever the complexity of a calculation, this package returns its result with an uncertainty as predicted by linear
error propagation theory. It automatically calculates derivatives and uses them for calculating uncertainties. Almost
all uncertainty calculations are performed analytically.

Correlations between variables are automatically handled, which sets this module apart from many existing error
propagation codes.

You may want to check the following related uncertainty calculation Python packages to see if they better suit your
needs: soerp (higher-order approximations) and mcerp (Monte-Carlo approach).

1.1 An easy-to-use calculator

Calculations involving numbers with uncertainties can be performed even without knowing anything about the
Python programming language. After installing this package and invoking the Python interpreter, calculations with
automatic error propagation can be performed transparently (i.e., through the usual syntax for mathematical for-
mulas):

>>> from uncertainties import ufloat
>>> from uncertainties.umath import * # sin(), etc.
>>> x = ufloat(1, 0.1) # x = 1+/-0.1
>>> print 2*x
2.00+/-0.20

(continues on next page)

1

http://pypi.python.org/pypi/uncertainties/
http://python.org/
http://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://pypi.python.org/pypi/soerp
https://pypi.python.org/pypi/mcerp
http://python.org/
http://docs.python.org/tutorial/interpreter.html

uncertainties Python package Documentation, Release 3.0.3

(continued from previous page)

>>> sin(2*x) # In a Python shell, "print" is optional
0.9092974268256817+/-0.08322936730942848

Thus, existing calculation code designed for regular numbers can run with numbers with uncertainties with no or little
modification.

Another strength of this package is its correct handling of correlations. For instance, the following quantity is exactly
zero even though x has an uncertainty:

>>> x-x
0.0+/-0

Many other error propagation codes return the incorrect value 0±0.1414. . . because they wrongly assume that the two
subtracted quantities are independent random variables.

Arrays of numbers with uncertainties are transparently handled too.

Derivatives are similarly very easy to obtain:

>>> (2*x+1000).derivatives[x]
2.0

They are calculated with a fast method.

1.2 Available documentation

The User Guide details many of the features of this package.

The part Uncertainties in arrays describes how arrays of numbers with uncertainties can be created and used.

The Technical Guide gives advanced technical details.

Additional information is available through the pydoc command, which gives access to many of the documentation
strings included in the code.

1.3 Installation and download

1.3.1 Important note

The installation commands below should be run in a DOS or Unix command shell (not in a Python shell).

Under Windows (version 7 and earlier), a command shell can be obtained by running cmd.exe (through the Run. . .
menu item from the Start menu). Under Unix (Linux, Mac OS X,. . .), a Unix shell is available when opening a
terminal (in Mac OS X, the Terminal program is found in the Utilities folder, which can be accessed through the Go
menu in the Finder).

1.3.2 Automatic install or upgrade

One of the automatic installation or upgrade procedures below might work on your system, if you have a Python
package installer or use certain Linux distributions.

Under Unix, it may be necessary to prefix the commands below with sudo, so that the installation program has
sufficient access rights to the system.

2 Chapter 1. Welcome to the uncertainties package

http://docs.python.org/library/pydoc.html

uncertainties Python package Documentation, Release 3.0.3

If you use the Anaconda distribution, you can install the latest version with

conda install -c conda-forge uncertainties

If you have pip, you can try to install the latest version with

pip install --upgrade uncertainties

If you have setuptools, you can try to automatically install or upgrade this package with

easy_install --upgrade uncertainties

The uncertainties package is also available for Windows through the Python(x,y) distribution. It may also be
included in Christoph Gohlke’s Base distribution of scientific Python packages.

Mac OS X users who use the MacPorts package manager can install uncertainties with sudo port
install py**-uncertainties, and upgrade it with sudo port upgrade py**-uncertainties
where ** represents the desired Python version (27, 33, etc.).

The uncertainties package is also available through the following Linux distributions and software platforms:
Ubuntu, Fedora, openSUSE, Debian and Maemo.

1.3.3 Manual download and install

Alternatively, you can simply download the package archive from the Python Package Index (PyPI) and unpack it.
The package can then be installed by going into the unpacked directory (uncertainties-...), and running the
provided setup.py program with

python setup.py install

(where the default python interpreter must generally be replaced by the version of Python for which the package
should be installed: python3, python3.3, etc.).

For an installation with Python 2.6+ in the user Python library (no additional access rights needed):

python setup.py install --user

For an installation in a custom directory my_directory:

python setup.py install --install-lib my_directory

If additional access rights are needed (Unix):

sudo python setup.py install

You can also simply move the uncertainties-py* directory that corresponds best to your version of Python to
a location that Python can import from (directory in which scripts using uncertainties are run, etc.); the chosen
uncertainties-py* directory should then be renamed uncertainties. Python 3 users should then run 2to3
-w . from inside this directory so as to automatically adapt the code to Python 3.

1.3.4 Source code

The latest, bleeding-edge but working code and documentation source are available on GitHub. The
uncertainties package is written in pure Python and has no external dependency (the NumPy package is op-
tional). It contains about 7000 lines of code. 75 % of these lines are documentation strings and comments. The

1.3. Installation and download 3

https://www.anaconda.com
https://pypi.org/project/pip/
http://pypi.python.org/pypi/setuptools
https://python-xy.github.io/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.macports.org/
https://launchpad.net/ubuntu/+source/uncertainties
http://pkgs.org/fedora-18/rpm-sphere-i586/python-uncertainties-1.8.dev418-4.1.noarch.rpm.html
https://build.opensuse.org/package/show?package=python-uncertainties&project=home%3Aocefpaf
http://packages.debian.org/search?keywords=python-uncertainties
http://maemo.org/packages/view/python-uncertainties/
http://pypi.python.org/pypi/uncertainties/#downloads
https://github.com/lebigot/uncertainties/tree/master/uncertainties
https://github.com/lebigot/uncertainties/tree/master/doc/
https://github.com/lebigot/uncertainties/
http://numpy.scipy.org/

uncertainties Python package Documentation, Release 3.0.3

remaining 25 % are split between unit tests (15 % of the total) and the calculation code proper (10 % of the total).
uncertainties is thus a lightweight, portable package with abundant documentation and tests.

1.4 Migration from version 1 to version 2

Some incompatible changes were introduced in version 2 of uncertainties (see the version history). While the
version 2 line will support the version 1 syntax for some time, it is recommended to update existing programs as
soon as possible. This can be made easier through the provided automatic updater.

The automatic updater works like Python’s 2to3 updater. It can be run (in a Unix or DOS shell) with:

python -m uncertainties.1to2

For example, updating a single Python program can be done with

python -m uncertainties.1to2 -w example.py

All the Python programs contained under a directory Programs (including in nested sub-directories) can be auto-
matically updated with

python -m uncertainties.1to2 -w Programs

Backups are automatically created, unless the -n option is given.

Some manual adjustments might be necessary after running the updater (incorrectly modified lines, untouched ob-
solete syntax).

While the updater creates backup copies by default, it is generally useful to first create a backup of the modified
directory, or alternatively to use some version control system. Reviewing the modifications with a file comparison tool
might also be useful.

1.5 What others say

• “Superb,” “wonderful,” “It’s like magic.” (Joaquin Abian)

• “pretty amazing” (John Kitchin)

• “An awesome python package” (Jason Moore)

• “Utterly brilliant” (Jeffrey Simpson)

• “An amazing time saver” (Paul Nakroshis)

• “Seems to be the gold standard for this kind of thing” (Peter Williams)

• “This package has a great interface and makes error propagation something to stop fearing.” (Dr Dawes)

• “uncertainties makes error propagation dead simple.” (enrico documentation)

• “many inspiring ideas” (Abraham Lee)

• “Those of us working with experimental data or simulation results will appreciate this.” (Konrad Hinsen)

• “PyPI’s uncertainties rocks!” (Siegfried Gevatter)

• “A very cool Python module” (Ram Rachum)

• “Holy f*** this would have saved me so much f***ing time last semester.” (reddit)

4 Chapter 1. Welcome to the uncertainties package

https://pypi.python.org/pypi/uncertainties#version-history
http://docs.python.org/2/library/2to3.html
http://en.wikipedia.org/wiki/Version_control_system
http://en.wikipedia.org/wiki/File_comparison
http://blog.garlicsim.org/post/1266209646/cool-python-module-uncertainties#comment-85154147
http://kitchingroup.cheme.cmu.edu/blog/2013/03/07/Another-approach-to-error-propagation/
http://biosport.ucdavis.edu/blog/2010/05/07/uncertainty-analysis
http://twitter.com/#!/GeekyJeffrey
http://scipyscriptrepo.com/wp/?p=41
http://newton.cx/~peter/work/?p=660
http://dawes.wordpress.com/2011/01/02/scientific-python/
http://readthedocs.org/docs/enrico/en/latest/setup.html
https://pypi.python.org/pypi/soerp#acknowledgements
http://khinsen.wordpress.com/2010/07/12/euroscipy-2010/
http://identi.ca/notice/23330742
http://blog.garlicsim.org/post/1266209646/cool-python-module-uncertainties
http://www.reddit.com/r/Python/comments/am84v/now_you_can_do_calculations_with_uncertainties_5/

uncertainties Python package Documentation, Release 3.0.3

1.6 Future developments

Planned future developments include (starting from the most requested ones):

• handling of complex numbers with uncertainties;

• increased support for NumPy: Fourier Transform with uncertainties, automatic wrapping of functions that ac-
cept or produce arrays, standard deviation of arrays, more convenient matrix creation, new linear algebra meth-
ods (eigenvalue and QR decompositions, determinant,. . .), input of arrays with uncertainties as strings (like in
NumPy),. . . ;

• JSON support;

• addition of real and imag attributes, for increased compatibility with existing code (Python numbers have
these attributes);

• addition of new functions from the math module;

• fitting routines that conveniently handle data with uncertainties;

• a re-correlate function that puts correlations back between data that was saved in separate files;

• support for multi-precision numbers with uncertainties.

Call for contributions: I got multiple requests for complex numbers with uncertainties, Fourier Transform support,
and the automatic wrapping of functions that accept or produce arrays. Please contact me if you are interested in
contributing. Patches are welcome. They must have a high standard of legibility and quality in order to be accepted
(otherwise it is always possible to create a new Python package by branching off this one, and I would still be happy
to help with the effort).

Please support the continued development of this program by donating $10 or more through PayPal (no PayPal
account necessary). I love modern board games, so this will go towards giving my friends and I some special gaming
time!

1.7 Contact

Feature requests, bug reports, or feedback are much welcome. They can be sent to the creator of
uncertainties, Eric O. LEBIGOT (EOL).

1.8 How to cite this package

If you use this package for a publication (in a journal, on the web, etc.), please cite it by including as much infor-
mation as possible from the following: Uncertainties: a Python package for calculations with uncertainties, Eric O.
LEBIGOT. Adding the version number is optional.

1.6. Future developments 5

http://numpy.scipy.org/
http://docs.python.org/library/json.html
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4TK7KNDTEDT4S
mailto:eric.lebigot@normalesup.org
http://linkedin.com/pub/eric-lebigot/22/293/277
http://linkedin.com/pub/eric-lebigot/22/293/277

uncertainties Python package Documentation, Release 3.0.3

1.9 Acknowledgments

The author wishes to thank all the people who made generous donations: they help keep this project alive by providing
positive feedback.

I greatly appreciate having gotten key technical input from Arnaud Delobelle, Pierre Cladé, and Sebastian Walter.
Patches by Pierre Cladé, Tim Head, José Sabater Montes, Martijn Pieters, Ram Rachum, Christoph Deil, Gabi Davar
and Roman Yurchak are gratefully acknowledged.

I would also like to thank users who contributed with feedback and suggestions, which greatly helped improve this
program: Joaquin Abian, Jason Moore, Martin Lutz, Víctor Terrón, Matt Newville, Matthew Peel, Don Peterson,
Mika Pflueger, Albert Puig, Abraham Lee, Arian Sanusi, Martin Laloux, Jonathan Whitmore, Federico Vaggi, Marco
A. Ferra, Hernan Grecco, David Zwicker, James Hester, Andrew Nelson, and many others.

I am grateful to the Anaconda, macOS and Linux distribution maintainers of this package (Jonathan Stickel, David
Paleino, Federico Ceratto, Roberto Colistete Jr, Filipe Pires Alvarenga Fernandes, and Felix Yan) and also to Gabi
Davar and Pierre Raybaut for including it in Python(x,y) and to Christoph Gohlke for including it in his Base distribu-
tion of scientific Python packages for Windows.

1.10 License

This software is released under a dual license; one of the following options can be chosen:

1. The Revised BSD License (© 2010–2018, Eric O. LEBIGOT [EOL]).

2. Any other license, as long as it is obtained from the creator of this package.

6 Chapter 1. Welcome to the uncertainties package

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4TK7KNDTEDT4S
https://python-xy.github.io/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://opensource.org/licenses/BSD-3-Clause

CHAPTER 2

User Guide

2.1 Basic setup

Basic mathematical operations involving numbers with uncertainties only require a simple import:

>>> from uncertainties import ufloat

The ufloat() function creates numbers with uncertainties. Existing calculation code can usually run with no or
little modification and automatically produce results with uncertainties.

The uncertainties module contains other features, which can be made accessible through

>>> import uncertainties

The uncertainties package also contains sub-modules for advanced mathematical functions, and arrays and
matrices.

2.2 Creating numbers with uncertainties

Numbers with uncertainties can be input either numerically, or through one of many string representations, so that files
containing numbers with uncertainties can easily be parsed. Thus, x = 0.20±0.01 can be expressed in many convenient
ways, including:

>>> x = ufloat(0.20, 0.01) # x = 0.20+/-0.01

>>> from uncertainties import ufloat_fromstr
>>> x = ufloat_fromstr("0.20+/-0.01")
>>> x = ufloat_fromstr("(2+/-0.1)e-01") # Factored exponent
>>> x = ufloat_fromstr("0.20(1)") # Short-hand notation
>>> x = ufloat_fromstr("20(1)e-2") # Exponent notation
>>> x = ufloat_fromstr(u"0.20±0.01") # Pretty-print form
>>> x = ufloat_fromstr("0.20") # Automatic uncertainty of +/-1 on last digit

7

uncertainties Python package Documentation, Release 3.0.3

Each number created this way is an independent (random) variable (for details, see the Technical Guide).

More information can be obtained with pydoc uncertainties.ufloat and pydoc uncertainties.
ufloat_fromstr (“20(1)×10-2” is also recognized, etc.).

2.3 Basic math

Calculations can be performed directly, as with regular real numbers:

>>> square = x**2
>>> print square
0.040+/-0.004

2.4 Mathematical operations

Besides being able to apply basic mathematical operations to numbers with uncertainty, this package provides gener-
alizations of most of the functions from the standard math module. These mathematical functions are found in the
uncertainties.umath module:

>>> from uncertainties.umath import * # Imports sin(), etc.
>>> sin(x**2)
0.03998933418663417+/-0.003996800426643912

The list of available mathematical functions can be obtained with the pydoc uncertainties.umath command.

2.4.1 NaN testing

NaN values can appear in a number with uncertainty. Care must be taken with such values, as values like NaN±1,
1±NaN and NaN±NaN are by definition not NaN, which is a float.

Testing whether a number with uncertainty has a NaN nominal value can be done with the provided function
uncertainties.umath.isnan(), which generalizes the standard math.isnan().

Checking whether the uncertainty of x is NaN can be done directly with the standard function: math.isnan(x.
std_dev) (or equivalently math.isnan(x.s)).

2.5 Arrays of numbers with uncertainties

It is possible to put numbers with uncertainties in NumPy arrays and matrices:

>>> arr = numpy.array([ufloat(1, 0.01), ufloat(2, 0.1)])
>>> 2*arr
[2.0+/-0.02 4.0+/-0.2]
>>> print arr.sum()
3.00+/-0.10

Thus, usual operations on NumPy arrays can be performed transparently even when these arrays contain numbers with
uncertainties.

More complex operations on NumPy arrays and matrices can be performed through the dedicated uncertainties.
unumpy module.

8 Chapter 2. User Guide

http://numpy.scipy.org/

uncertainties Python package Documentation, Release 3.0.3

2.6 Automatic correlations

Correlations between variables are automatically handled whatever the number of variables involved, and whatever
the complexity of the calculation. For example, when x is the number with uncertainty defined above,

>>> square = x**2
>>> print square
0.040+/-0.004
>>> square - x*x
0.0+/-0
>>> y = x*x + 1
>>> y - square
1.0+/-0

The last two printed results above have a zero uncertainty despite the fact that x, y and square have a non-zero
uncertainty: the calculated functions give the same value for all samples of the random variable x.

Thanks to the automatic correlation handling, calculations can be performed in as many steps as necessary, exactly as
with simple floats. When various quantities are combined through mathematical operations, the result is calculated by
taking into account all the correlations between the quantities involved. All of this is done completely transparently.

2.7 Access to the uncertainty and to the nominal value

The nominal value and the uncertainty (standard deviation) can also be accessed independently:

>>> print square
0.040+/-0.004
>>> print square.nominal_value
0.04
>>> print square.n # Abbreviation
0.04
>>> print square.std_dev
0.004
>>> print square.s # Abbreviation
0.004

2.8 Access to the individual sources of uncertainty

The various contributions to an uncertainty can be obtained through the error_components() method, which
maps the independent variables a quantity depends on to their contribution to the total uncertainty. According
to linear error propagation theory (which is the method followed by uncertainties), the sum of the squares of
these contributions is the squared uncertainty.

The individual contributions to the uncertainty are more easily usable when the variables are tagged:

>>> u = ufloat(1, 0.1, "u variable") # Tag
>>> v = ufloat(10, 0.1, "v variable")
>>> sum_value = u+2*v
>>> sum_value
21.0+/-0.223606797749979
>>> for (var, error) in sum_value.error_components().items():
... print "{}: {}".format(var.tag, error)

(continues on next page)

2.6. Automatic correlations 9

uncertainties Python package Documentation, Release 3.0.3

(continued from previous page)

...
u variable: 0.1
v variable: 0.2

The variance (i.e. squared uncertainty) of the result (sum_value) is the quadratic sum of these independent uncer-
tainties, as it should be (0.1**2 + 0.2**2).

The tags do not have to be distinct. For instance, multiple random variables can be tagged as "systematic", and
their contribution to the total uncertainty of result can simply be obtained as:

>>> syst_error = math.sqrt(sum(# Error from *all* systematic errors
... error**2
... for (var, error) in result.error_components().items()
... if var.tag == "systematic"))

The remaining contribution to the uncertainty is:

>>> other_error = math.sqrt(result.std_dev**2 - syst_error**2)

The variance of result is in fact simply the quadratic sum of these two errors, since the variables from result.
error_components() are independent.

2.9 Comparison operators

Comparison operators behave in a natural way:

>>> print x
0.200+/-0.010
>>> y = x + 0.0001
>>> y
0.2001+/-0.01
>>> y > x
True
>>> y > 0
True

One important concept to keep in mind is that ufloat() creates a random variable, so that two numbers with the
same nominal value and standard deviation are generally different:

>>> y = ufloat(1, 0.1)
>>> z = ufloat(1, 0.1)
>>> print y
1.00+/-0.10
>>> print z
1.00+/-0.10
>>> y == y
True
>>> y == z
False

In physical terms, two rods of the same nominal length and uncertainty on their length are generally of different sizes:
y is different from z.

More detailed information on the semantics of comparison operators for numbers with uncertainties can be found in
the Technical Guide.

10 Chapter 2. User Guide

uncertainties Python package Documentation, Release 3.0.3

2.10 Covariance and correlation matrices

2.10.1 Covariance matrix

The covariance matrix between various variables or calculated quantities can be simply obtained:

>>> sum_value = u+2*v
>>> cov_matrix = uncertainties.covariance_matrix([u, v, sum_value])

has value

[[0.01, 0.0, 0.01],
[0.0, 0.01, 0.02],
[0.01, 0.02, 0.05]]

In this matrix, the zero covariances indicate that u and v are independent from each other; the last column shows
that sum_value does depend on these variables. The uncertainties package keeps track at all times of all
correlations between quantities (variables and functions):

>>> sum_value - (u+2*v)
0.0+/-0

2.10.2 Correlation matrix

If the NumPy package is available, the correlation matrix can be obtained as well:

>>> corr_matrix = uncertainties.correlation_matrix([u, v, sum_value])
>>> corr_matrix
array([[1. , 0. , 0.4472136],

[0. , 1. , 0.89442719],
[0.4472136 , 0.89442719, 1.]])

2.11 Correlated variables

Reciprocally, correlated variables can be created transparently, provided that the NumPy package is available.

2.11.1 Use of a covariance matrix

Correlated variables can be obtained through the covariance matrix:

>>> (u2, v2, sum2) = uncertainties.correlated_values([1, 10, 21], cov_matrix)

creates three new variables with the listed nominal values, and the given covariance matrix:

>>> sum_value
21.0+/-0.223606797749979
>>> sum2
21.0+/-0.223606797749979
>>> sum2 - (u2+2*v2)
0.0+/-3.83371856862256e-09

2.10. Covariance and correlation matrices 11

http://numpy.scipy.org/
http://numpy.scipy.org/

uncertainties Python package Documentation, Release 3.0.3

The theoretical value of the last expression is exactly zero, like for sum - (u+2*v), but numerical errors yield a
small uncertainty (3e-9 is indeed very small compared to the uncertainty on sum2: correlations should in fact cancel
the uncertainty on sum2).

The covariance matrix is the desired one:

>>> uncertainties.covariance_matrix([u2, v2, sum2])

reproduces the original covariance matrix cov_matrix (up to rounding errors).

2.11.2 Use of a correlation matrix

Alternatively, correlated values can be defined through:

• a sequence of nominal values and standard deviations, and

• a correlation matrix between each variable of this sequence (the correlation matrix is the covariance matrix
normalized with individual standard deviations; it has ones on its diagonal)—in the form of a NumPy array-like
object, e.g. a list of lists, or a NumPy array.

Example:

>>> (u3, v3, sum3) = uncertainties.correlated_values_norm(
... [(1, 0.1), (10, 0.1), (21, 0.22360679774997899)], corr_matrix)
>>> print u3
1.00+/-0.10

The three returned numbers with uncertainties have the correct uncertainties and correlations (corr_matrix can be
recovered through correlation_matrix()).

2.12 Printing

Numbers with uncertainties can be printed conveniently:

>>> print x
0.200+/-0.010

The resulting form can generally be parsed back with ufloat_fromstr() (except for the LaTeX form).

The nominal value and the uncertainty always have the same precision: this makes it easier to compare them.

2.12.1 Standard formats

More control over the format can be obtained (in Python 2.6+) through the usual format() method of strings:

>>> print 'Result = {:10.2f}'.format(x)
Result = 0.20+/- 0.01

(Python 2.6 requires '{0:10.2f}' instead, with the usual explicit index. In Python 2.5 and earlier versions, str.
format() is not available, but one can use the format() method of numbers with uncertainties instead: 'Result
= %s' % x.format('10.2f').)

All the float format specifications are accepted, except those with the n format type. In particular, a fill character, an
alignment option, a sign or zero option, a width, or the % format type are all supported.

12 Chapter 2. User Guide

uncertainties Python package Documentation, Release 3.0.3

The usual float formats with a precision retain their original meaning (e.g. .2e uses two digits after the decimal
point): code that works with floats produces similar results when running with numbers with uncertainties.

2.12.2 Precision control

It is possible to control the number of significant digits of the uncertainty by adding the precision modifier u after
the precision (and before any valid float format type like f, e, the empty format type, etc.):

>>> print '1 significant digit on the uncertainty: {:.1u}'.format(x)
1 significant digit on the uncertainty: 0.20+/-0.01
>>> print '3 significant digits on the uncertainty: {:.3u}'.format(x)
3 significant digits on the uncertainty: 0.2000+/-0.0100
>>> print '1 significant digit, exponent notation: {:.1ue}'.format(x)
1 significant digit, exponent notation: (2.0+/-0.1)e-01
>>> print '1 significant digit, percentage: {:.1u%}'.format(x)
1 significant digit, percentage: (20+/-1)%

When uncertainties must choose the number of significant digits on the uncertainty, it uses the Particle Data
Group rounding rules (these rules keep the number of digits small, which is convenient for reading numbers with
uncertainties, and at the same time prevent the uncertainty from being displayed with too few digits):

>>> print 'Automatic number of digits on the uncertainty: {}'.format(x)
Automatic number of digits on the uncertainty: 0.200+/-0.010
>>> print x
0.200+/-0.010

2.12.3 Custom options

uncertainties provides even more flexibility through custom formatting options. They can be added at the end
of the format string:

• P for pretty-printing:

>>> print '{:.2e}'.format(x)
(2.00+/-0.10)e-01
>>> print u'{:.2eP}'.format(x)
(2.00±0.10)×10−1

The pretty-printing mode thus uses “±”, “×” and superscript exponents. Note that the pretty-printing mode
implies using Unicode format strings (u'...' in Python 2, but simply '...' in Python 3).

• S for the shorthand notation:

>>> print '{:+.1uS}'.format(x) # Sign, 1 digit for the uncertainty, shorthand
+0.20(1)

In this notation, the digits in parentheses represent the uncertainty on the last digits of the nominal value.

• L for a LaTeX output:

>>> print x*1e7
(2.00+/-0.10)e+06
>>> print '{:L}'.format(x*1e7) # Automatic exponent form, LaTeX
\left(2.00 \pm 0.10\right) \times 10^{6}

These custom formatting options can be combined (when meaningful).

2.12. Printing 13

http://PDG.lbl.gov/2010/reviews/rpp2010-rev-rpp-intro.pdf
http://PDG.lbl.gov/2010/reviews/rpp2010-rev-rpp-intro.pdf

uncertainties Python package Documentation, Release 3.0.3

2.12.4 Details

A common exponent is automatically calculated if an exponent is needed for the larger of the nominal value (in
absolute value) and the uncertainty (the rule is the same as for floats). The exponent is generally factored, for increased
legibility:

>>> print x*1e7
(2.00+/-0.10)e+06

When a format width is used, the common exponent is not factored:

>>> print 'Result = {:10.1e}'.format(x*1e-10)
Result = 2.0e-11+/- 0.1e-11

(Using a (minimal) width of 1 is thus a way of forcing exponents to not be factored.) Thanks to this feature, each part
(nominal value and standard deviation) is correctly aligned across multiple lines, while the relative magnitude of the
error can still be readily estimated thanks to the common exponent.

An uncertainty which is exactly zero is always formatted as an integer:

>>> print ufloat(3.1415, 0)
3.1415+/-0
>>> print ufloat(3.1415e10, 0)
(3.1415+/-0)e+10
>>> print ufloat(3.1415, 0.0005)
3.1415+/-0.0005
>>> print '{:.2f}'.format(ufloat(3.14, 0.001))
3.14+/-0.00
>>> print '{:.2f}'.format(ufloat(3.14, 0.00))
3.14+/-0

All the digits of a number with uncertainty are given in its representation:

>>> y = ufloat(1.23456789012345, 0.123456789)
>>> print y
1.23+/-0.12
>>> print repr(y)
1.23456789012345+/-0.123456789
>>> y
1.23456789012345+/-0.123456789

More information on formatting can be obtained with pydoc uncertainties.UFloat.__format__ (cus-
tomization of the LaTeX output, etc.).

2.12.5 Global formatting

It is sometimes useful to have a consistent formatting across multiple parts of a program. Python’s string.Formatter
class allows one to do just that. Here is how it can be used to consistently use the shorthand notation for numbers with
uncertainties:

class ShorthandFormatter(string.Formatter):

def format_field(self, value, format_spec):
if isinstance(value, uncertainties.UFloat):

return value.format(format_spec+'S') # Shorthand option added
Special formatting for other types can be added here (floats, etc.)

(continues on next page)

14 Chapter 2. User Guide

http://docs.python.org/2/library/string.html#string-formatting
http://docs.python.org/2/library/string.html#string-formatting

uncertainties Python package Documentation, Release 3.0.3

(continued from previous page)

else:
Usual formatting:
return super(ShorthandFormatter, self).format_field(

value, format_spec)

frmtr = ShorthandFormatter()

print frmtr.format("Result = {0:.1u}", x) # 1-digit uncertainty

prints with the shorthand notation: Result = 0.20(1).

2.13 Making custom functions accept numbers with uncertainties

This package allows code which is not meant to be used with numbers with uncertainties to handle them anyway.
This is for instance useful when calling external functions (which are out of the user’s control), including functions
written in C or Fortran. Similarly, functions that do not have a simple analytical form can be automatically wrapped
so as to also work with arguments that contain uncertainties.

It is thus possible to take a function f() that returns a single float, and to automatically generalize it so that it also
works with numbers with uncertainties:

>>> wrapped_f = uncertainties.wrap(f)

The new function wrapped_f() accepts numbers with uncertainties as arguments wherever a Python float is used
for f(). wrapped_f() returns the same values as f(), but with uncertainties.

With a simple wrapping call like above, uncertainties in the function result are automatically calculated numerically.
Analytical uncertainty calculations can be performed if derivatives are provided to wrap().

More details are available in the documentation string of wrap() (accessible through the pydoc command, or
Python’s help() shell function).

2.14 Miscellaneous utilities

It is sometimes useful to modify the error on certain parameters so as to study its impact on a final result. With this
package, the uncertainty of a variable can be changed on the fly:

>>> sum_value = u+2*v
>>> sum_value
21.0+/-0.223606797749979
>>> prev_uncert = u.std_dev
>>> u.std_dev = 10
>>> sum_value
21.0+/-10.00199980003999
>>> u.std_dev = prev_uncert

The relevant concept is that sum_value does depend on the variables u and v: the uncertainties package
keeps track of this fact, as detailed in the Technical Guide, and uncertainties can thus be updated at any time.

When manipulating ensembles of numbers, some of which contain uncertainties while others are simple floats, it can
be useful to access the nominal value and uncertainty of all numbers in a uniform manner. This is what the
nominal_value() and std_dev() functions do:

2.13. Making custom functions accept numbers with uncertainties 15

uncertainties Python package Documentation, Release 3.0.3

>>> print uncertainties.nominal_value(x)
0.2
>>> print uncertainties.std_dev(x)
0.01
>>> uncertainties.nominal_value(3)
3
>>> uncertainties.std_dev(3)
0.0

Finally, a utility method is provided that directly yields the standard score (number of standard deviations) between a
number and a result with uncertainty: with x equal to 0.20±0.01,

>>> x.std_score(0.17)
-3.0

2.15 Derivatives

Since the application of linear error propagation theory involves the calculation of derivatives, this package automat-
ically performs such calculations; users can thus easily get the derivative of an expression with respect to any of its
variables:

>>> u = ufloat(1, 0.1)
>>> v = ufloat(10, 0.1)
>>> sum_value = u+2*v
>>> sum_value.derivatives[u]
1.0
>>> sum_value.derivatives[v]
2.0

These values are obtained with a fast differentiation algorithm.

2.16 Additional information

The capabilities of the uncertainties package in terms of array handling are detailed in Uncertainties in arrays.

Details about the theory behind this package and implementation information are given in the Technical Guide.

16 Chapter 2. User Guide

http://en.wikipedia.org/wiki/Standard_score

CHAPTER 3

Uncertainties in arrays

3.1 The unumpy package

This package contains:

1. utilities that help with the creation and manipulation of NumPy arrays and matrices of numbers with uncertainties;

2. generalizations of multiple NumPy functions so that they also work with arrays that contain numbers with uncer-
tainties.

While basic operations on arrays that contain numbers with uncertainties can be performed without it, the unumpy
package is useful for more advanced uses.

Operations on arrays (including their cosine, etc.) can thus be performed transparently.

These features can be made available with

>>> from uncertainties import unumpy

3.1.1 Creation and manipulation of arrays and matrices

Arrays

Arrays of numbers with uncertainties can be built from values and uncertainties:

>>> arr = unumpy.uarray([1, 2], [0.01, 0.002])
>>> print arr
[1.0+/-0.01 2.0+/-0.002]

NumPy arrays of numbers with uncertainties can also be built directly through NumPy, thanks to NumPy’s support of
arrays of arbitrary objects:

>>> arr = numpy.array([ufloat(1, 0.1), ufloat(2, 0.002)])

17

http://numpy.scipy.org/

uncertainties Python package Documentation, Release 3.0.3

Matrices

Matrices of numbers with uncertainties are best created in one of two ways. The first way is similar to using
uarray():

>>> mat = unumpy.umatrix([1, 2], [0.01, 0.002])

Matrices can also be built by converting arrays of numbers with uncertainties into matrices through the unumpy.
matrix class:

>>> mat = unumpy.matrix(arr)

unumpy.matrix objects behave like numpy.matrix objects of numbers with uncertainties, but with better sup-
port for some operations (such as matrix inversion). For instance, regular NumPy matrices cannot be inverted, if they
contain numbers with uncertainties (i.e., numpy.matrix([[ufloat(...), ...]]).I does not work). This
is why the unumpy.matrix class is provided: both the inverse and the pseudo-inverse of a matrix can be calculated
in the usual way: if mat is a unumpy.matrix,

>>> print mat.I

does calculate the inverse or pseudo-inverse of mat with uncertainties.

Uncertainties and nominal values

Nominal values and uncertainties in arrays (and matrices) can be directly accessed (through functions that work on
pure float arrays too):

>>> unumpy.nominal_values(arr)
array([1., 2.])
>>> unumpy.std_devs(mat)
matrix([[0.1 , 0.002]])

3.1.2 Mathematical functions

This module defines uncertainty-aware mathematical functions that generalize those from uncertainties.umath
so that they work on NumPy arrays of numbers with uncertainties instead of just scalars:

>>> print unumpy.cos(arr) # Cosine of each array element

NumPy’s function names are used, and not those from the math module (for instance, unumpy.arccos() is
defined, like in NumPy, and is not named acos() like in the math module).

The definition of the mathematical quantities calculated by these functions is available in the documentation for
uncertainties.umath (which is accessible through help() or pydoc).

NaN testing and NaN-aware operations

One particular function pertains to NaN testing: unumpy.isnan(). It returns true for each NaN nominal value (and
false otherwise).

Since NaN±1 is not (the scalar) NaN, functions like numpy.nanmean() do not skip such values. This is where
unumpy.isnan() is useful, as it can be used for masking out numbers with a NaN nominal value:

18 Chapter 3. Uncertainties in arrays

uncertainties Python package Documentation, Release 3.0.3

>>> nan = float("nan")
>>> arr = numpy.array([nan, uncertainties.ufloat(nan, 1), uncertainties.ufloat(1,
→˓nan), 2])
>>> arr
array([nan, nan+/-1.0, 1.0+/-nan, 2], dtype=object)
>>> arr[~unumpy.isnan(arr)].mean()
1.5+/-nan

or equivalently, by using masked arrays:

>>> masked_arr = numpy.ma.array(arr, mask=unumpy.isnan(arr))
>>> masked_arr.mean()
1.5+/-nan

In this case the uncertainty is NaN as it should be, because one of the numbers does have an undefined uncertainty,
which makes the final uncertainty undefined (but the average is well defined). In general, uncertainties are not NaN
and one obtains the mean of the non-NaN values.

3.2 Storing arrays in text format

Arrays of numbers with uncertainties can be directly pickled, saved to file and read from a file. Pickling has the
advantage of preserving correlations between errors.

Storing instead arrays in text format loses correlations between errors but has the advantage of being both computer-
and human-readable. This can be done through NumPy’s savetxt() and loadtxt().

Writing the array to file can be done by asking NumPy to use the representation of numbers with uncertainties (instead
of the default float conversion):

>>> numpy.savetxt('arr.txt', arr, fmt='%r')

This produces a file arr.txt that contains a text representation of the array:

1.0+/-0.01
2.0+/-0.002

The file can then be read back by instructing NumPy to convert all the columns with uncertainties.
ufloat_fromstr(). The number num_cols of columns in the input file (1, in our example) must be determined
in advance, because NumPy requires a converter for each column separately. For Python 2:

>>> converters = dict.fromkeys(range(num_cols), uncertainties.ufloat_fromstr)

For Python 3, since numpy.loadtxt() passes bytes to converters, they must first be converted into a string:

>>> converters = dict.fromkeys(
range(num_cols),
lambda col_bytes: uncertainties.ufloat_fromstr(col_bytes.decode("latin1")))

(Latin 1 appears to in fact be the encoding used in numpy.savetxt() [as of NumPy 1.12]. This encoding seems
to be the one hardcoded in numpy.compat.asbytes().)

The array can then be loaded:

>>> arr = numpy.loadtxt('arr.txt', converters=converters, dtype=object)

3.2. Storing arrays in text format 19

uncertainties Python package Documentation, Release 3.0.3

3.3 Additional array functions: unumpy.ulinalg

The unumpy.ulinalg module contains more uncertainty-aware functions for arrays that contain numbers with
uncertainties.

It currently offers generalizations of two functions from numpy.linalg that work on arrays (or matrices) that
contain numbers with uncertainties, the matrix inverse and pseudo-inverse:

>>> unumpy.ulinalg.inv([[ufloat(2, 0.1)]])
array([[0.5+/-0.025]], dtype=object)
>>> unumpy.ulinalg.pinv(mat)
matrix([[0.2+/-0.0012419339757],

[0.4+/-0.00161789987329]], dtype=object)

20 Chapter 3. Uncertainties in arrays

CHAPTER 4

Technical Guide

4.1 Testing whether an object is a number with uncertainty

The recommended way of testing whether value carries an uncertainty handled by this module is by checking
whether value is an instance of UFloat, through isinstance(value, uncertainties.UFloat).

4.2 Pickling

The quantities with uncertainties created by the uncertainties package can be pickled (they can be stored in a
file, for instance).

If multiple variables are pickled together (including when pickling NumPy arrays), their correlations are preserved:

>>> import pickle
>>> x = ufloat(2, 0.1)
>>> y = 2*x
>>> p = pickle.dumps([x, y]) # Pickling to a string
>>> (x2, y2) = pickle.loads(p) # Unpickling into new variables
>>> y2 - 2*x2
0.0+/-0

The final result is exactly zero because the unpickled variables x2 and y2 are completely correlated.

However, unpickling necessarily creates new variables that bear no relationship with the original variables (in
fact, the pickled representation can be stored in a file and read from another program after the program that did the
pickling is finished: the unpickled variables cannot be correlated to variables that can disappear). Thus

>>> x - x2
0.0+/-0.14142135623730953

which shows that the original variable x and the new variable x2 are completely uncorrelated.

21

http://docs.python.org/library/pickle.html

uncertainties Python package Documentation, Release 3.0.3

4.3 Comparison operators

Comparison operations (>, ==, etc.) on numbers with uncertainties have a pragmatic semantics, in this package:
numbers with uncertainties can be used wherever Python numbers are used, most of the time with a result identical to
the one that would be obtained with their nominal value only. This allows code that runs with pure numbers to also
work with numbers with uncertainties.

The boolean value (bool(x), if x ...) of a number with uncertainty x is defined as the result of x != 0, as
usual.

However, since the objects defined in this module represent probability distributions and not pure numbers, comparison
operators are interpreted in a specific way.

The result of a comparison operation is defined so as to be essentially consistent with the requirement that uncertainties
be small: the value of a comparison operation is True only if the operation yields True for all infinitesimal variations
of its random variables around their nominal values, except, possibly, for an infinitely small number of cases.

Example:

>>> x = ufloat(3.14, 0.01)
>>> x == x
True

because a sample from the probability distribution of x is always equal to itself. However:

>>> y = ufloat(3.14, 0.01)
>>> x != y
True

since x and y are independent random variables that almost always give a different value. Note that this is different
from the result of z = 3.14; t = 3.14; print z != t, because x and y are random variables, not pure
numbers.

Similarly,

>>> x = ufloat(3.14, 0.01)
>>> y = ufloat(3.00, 0.01)
>>> x > y
True

because x is supposed to have a probability distribution largely contained in the 3.14±~0.01 interval, while y is
supposed to be well in the 3.00±~0.01 one: random samples of x and y will most of the time be such that the sample
from x is larger than the sample from y. Therefore, it is natural to consider that for all practical purposes, x > y.

Since comparison operations are subject to the same constraints as other operations, as required by the linear approx-
imation method, their result should be essentially constant over the regions of highest probability of their variables
(this is the equivalent of the linearity of a real function, for boolean values). Thus, it is not meaningful to compare the
following two independent variables, whose probability distributions overlap:

>>> x = ufloat(3, 0.01)
>>> y = ufloat(3.0001, 0.01)

In fact the function (x, y) → (x > y) is not even continuous over the region where x and y are concentrated, which vio-
lates the assumption of approximate linearity made in this package on operations involving numbers with uncertainties.
Comparing such numbers therefore returns a boolean result whose meaning is undefined.

However, values with largely overlapping probability distributions can sometimes be compared unambiguously:

22 Chapter 4. Technical Guide

uncertainties Python package Documentation, Release 3.0.3

>>> x = ufloat(3, 1)
>>> x
3.0+/-1.0
>>> y = x + 0.0002
>>> y
3.0002+/-1.0
>>> y > x
True

In fact, correlations guarantee that y is always larger than x: y-x correctly satisfies the assumption of linearity, since
it is a constant “random” function (with value 0.0002, even though y and x are random). Thus, it is indeed true that y
> x.

4.4 Linear propagation of uncertainties

4.4.1 Constraints on the uncertainties

This package calculates the standard deviation of mathematical expressions through the linear approximation of error
propagation theory.

The standard deviations and nominal values calculated by this package are thus meaningful approximations as long as
uncertainties are “small”. A more precise version of this constraint is that the final calculated functions must have
precise linear expansions in the region where the probability distribution of their variables is the largest. Mathe-
matically, this means that the linear terms of the final calculated functions around the nominal values of their variables
should be much larger than the remaining higher-order terms over the region of significant probability (because such
higher-order contributions are neglected).

For example, calculating x*10 with x = 5±3 gives a perfect result since the calculated function is linear. So does
umath.atan(umath.tan(x)) for x = 0±1, since only the final function counts (not an intermediate function
like tan()).

Another example is sin(0+/-0.01), for which uncertainties yields a meaningful standard deviation since
the sine is quite linear over 0±0.01. However, cos(0+/-0.01), yields an approximate standard deviation of 0
because it is parabolic around 0 instead of linear; this might not be precise enough for all applications.

More precise uncertainty estimates can be obtained, if necessary, with the soerp and mcerp packages. The soerp
package performs second-order error propagation: this is still quite fast, but the standard deviation of higher-order
functions like f(x) = x3 for x = 0±0.1 is calculated as being exactly zero (as with uncertainties). The mcerp
package performs Monte-Carlo calculations, and can in principle yield very precise results, but calculations are much
slower than with approximation schemes.

4.4.2 NaN uncertainty

If linear error propagation theory cannot be applied, the functions defined by uncertainties internally use a
not-a-number value (nan) for the derivative.

As a consequence, it is possible for uncertainties to be nan:

>>> umath.sqrt(ufloat(0, 1))
0.0+/-nan

This indicates that the derivative required by linear error propagation theory is not defined (a Monte-Carlo
calculation of the resulting random variable is more adapted to this specific case).

4.4. Linear propagation of uncertainties 23

http://en.wikipedia.org/wiki/Error_propagation
http://en.wikipedia.org/wiki/Error_propagation
https://pypi.python.org/pypi/soerp
https://pypi.python.org/pypi/mcerp
https://pypi.python.org/pypi/soerp
https://pypi.python.org/pypi/mcerp
http://en.wikipedia.org/wiki/Error_propagation
http://en.wikipedia.org/wiki/Not_a_number

uncertainties Python package Documentation, Release 3.0.3

However, even in this case where the derivative at the nominal value is infinite, the uncertainties package
correctly handles perfectly precise numbers:

>>> umath.sqrt(ufloat(0, 0))
0.0+/-0

is thus the correct result, despite the fact that the derivative of the square root is not defined in zero.

4.5 Mathematical definition of numbers with uncertainties

Mathematically, numbers with uncertainties are, in this package, probability distributions. They are not restricted
to normal (Gaussian) distributions and can be any distribution. These probability distributions are reduced to two
numbers: a nominal value and an uncertainty.

Thus, both independent variables (Variable objects) and the result of mathematical operations
(AffineScalarFunc objects) contain these two values (respectively in their nominal_value and std_dev
attributes).

The uncertainty of a number with uncertainty is simply defined in this package as the standard deviation of the
underlying probability distribution.

The numbers with uncertainties manipulated by this package are assumed to have a probability distribution mostly
contained around their nominal value, in an interval of about the size of their standard deviation. This should cover
most practical cases.

A good choice of nominal value for a number with uncertainty is thus the median of its probability distribution, the
location of highest probability, or the average value.

Probability distributions (random variables and calculation results) are printed as:

nominal value +/- standard deviation

but this does not imply any property on the nominal value (beyond the fact that the nominal value is normally inside
the region of high probability density), or that the probability distribution of the result is symmetrical (this is rarely
strictly the case).

4.6 Differentiation method

The uncertainties package automatically calculates the derivatives required by linear error propagation theory.

Almost all the derivatives of the fundamental functions provided by uncertainties are obtained through analytical
formulas (the few mathematical functions that are instead differentiated through numerical approximation are listed in
umath_core.num_deriv_funcs).

The derivatives of mathematical expressions are evaluated through a fast and precise method: uncertainties
transparently implements automatic differentiation with reverse accumulation. This method essentially consists in
keeping track of the value of derivatives, and in automatically applying the chain rule. Automatic differentiation is
faster than symbolic differentiation and more precise than numerical differentiation.

The derivatives of any expression can be obtained with uncertainties in a simple way, as demonstrated in the
User Guide.

24 Chapter 4. Technical Guide

http://en.wikipedia.org/wiki/Automatic_differentiation
http://en.wikipedia.org/wiki/Chain_rule

uncertainties Python package Documentation, Release 3.0.3

4.7 Tracking of random variables

This package keeps track of all the random variables a quantity depends on, which allows one to perform transparent
calculations that yield correct uncertainties. For example:

>>> x = ufloat(2, 0.1)
>>> a = 42
>>> poly = x**2 + a
>>> poly
46.0+/-0.4
>>> poly - x*x
42+/-0

Even though x*x has a non-zero uncertainty, the result has a zero uncertainty, because it is equal to a.

If the variable a above is modified, the value of poly is not modified, as is usual in Python:

>>> a = 123
>>> print poly
46.0+/-0.4 # Still equal to x**2 + 42, not x**2 + 123

Random variables can, on the other hand, have their uncertainty updated on the fly, because quantities with uncertain-
ties (like poly) keep track of them:

>>> x.std_dev = 0
>>> print poly
46+/-0 # Zero uncertainty, now

As usual, Python keeps track of objects as long as they are used. Thus, redefining the value of x does not change the
fact that poly depends on the quantity with uncertainty previously stored in x:

>>> x = 10000
>>> print poly
46+/-0 # Unchanged

These mechanisms make quantities with uncertainties behave mostly like regular numbers, while providing a fully
transparent way of handling correlations between quantities.

4.8 Python classes for variables and functions with uncertainty

Numbers with uncertainties are represented through two different classes:

1. a class for independent random variables (Variable, which inherits from UFloat),

2. a class for functions that depend on independent variables (AffineScalarFunc, aliased as UFloat).

Documentation for these classes is available in their Python docstring, which can for instance displayed through pydoc.

The factory function ufloat() creates variables and thus returns a Variable object:

>>> x = ufloat(1, 0.1)
>>> type(x)
<class 'uncertainties.Variable'>

Variable objects can be used as if they were regular Python numbers (the summation, etc. of these objects is
defined).

4.7. Tracking of random variables 25

http://docs.python.org/library/pydoc.html

uncertainties Python package Documentation, Release 3.0.3

Mathematical expressions involving numbers with uncertainties generally return AffineScalarFunc objects, be-
cause they represent mathematical functions and not simple variables; these objects store all the variables they depend
on:

>>> type(umath.sin(x))
<class 'uncertainties.AffineScalarFunc'>

26 Chapter 4. Technical Guide

Index

A
AffineScalarFunc class, 25
arrays

creation and manipulation, 17
simple use, 8

B
boolean value, 22

C
C code

wrapping, 12
calculator, 1
comparison operators, 10

technical details, 21
correlations

correlated variables, 11
detailed example, 8
simple example, 2

covariance matrix, 10
creation

arrays, 17
matrices, 17
number with uncertainty, 7

D
derivatives, 16

F
formatting, 12
Fortran code

wrapping, 12

I
installation, 2

L
license, 6
linear algebra

additional functions, 19
linear propagation of uncertainties, 23

M
mathematical operation

on a scalar, 8
on an array of numbers, 18

matrices
creation and manipulation, 17
simple use, 8

N
NaN

testing (scalar), 8
testing and operations (in arrays), 18
uncertainty, 23

nominal value
definition, 24
scalar, 15
uniform access (array), 18
uniform access (scalar), 15

number with uncertainty
classes, 25
creation, 7
definition, 24

P
pickling, 21
printing, 12
probability distribution, 24

R
reading from file

array, 19
number with uncertainty, 21

S
saving to file

array, 19

27

uncertainties Python package Documentation, Release 3.0.3

number with uncertainty, 21
scalar

nominal value, 15
uncertainty, 15

standard deviation
on the fly modification, 15
uniform access (array), 18
uniform access (scalar), 15

support, 5

T
technical details, 20
testing (scalar)

NaN, 8
testing and operations (in arrays)

NaN, 18

U
ulinalg, 19
umath, 8
uncertainty

definition, 24
NaN, 23
scalar, 15
uniform access (array), 18
uniform access (scalar), 15

uniform access (array)
nominal value, 18
standard deviation, 18
uncertainty, 18

uniform access (scalar)
nominal value, 15
standard deviation, 15
uncertainty, 15

unumpy, 17
user guide, 6

V
Variable class, 25

W
wrapping (C, Fortran,. . .) functions, 12

28 Index

	Welcome to the uncertainties package
	User Guide
	Uncertainties in arrays
	Technical Guide

